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DETERMINATION OF AN OPTIMAL CONTROL STRATEGY 
FOR A GENERIC SURFACE VEHICLE 

INTRODUCTION 

A critical component of all autonomous mechanical systems is the ability to follow 
prescribed motion trajectories. In particular, for autonomous vehicles, this motion trajectory is 
given by the determination of the motion path for the vehicle to follow to get from one point to 
another. Determining the best path to take and performing the mechanical functions to follow 
that path (that is, setting a thrust and steering) are basic functions of all driving and piloting that 
are often taken for granted when the vehicle is a maimed (or remotely operated) system. For 
autonomous military systems, however, optimal path planning and optimal vehicle control are 
not simple, routine fiinctions; they are complex operations affected by many parameters. As 
more and more tasks are transferred to autonomous agents, determining an optimal control 
strategy becomes increasingly crucial to system performance to assure platform safety, platform 
efficiency, and successful mission completion. 

This report documents the research that was conducted to determine an optimal control 
strategy for a generic surface vehicle. Specifically, this report focuses on planning the optimal 
path for a generic surface vehicle (boat) that is operating in a region with non-negligible surface 
currents. Given a known initial position, the planning goal for this investigation was to find a 
path to get to a prescribed ending position at a prescribed time, while expending a minimal 
amount of energy. The steps necessary to achieve that goal, described in the ensuing sections, 
include such topics as (1) a mathematical description of a dynamic model of the surface vehicle, 
(2) a numerical investigation showing the qualitative validity of the model, (3) a two-point 
boundary value problem formulation of the path planning goal, (4) the optimization performed to 
determine those optimal paths, (5) techniques of optimal control theory to achieve the optimal 
path, even in situations when the initial condition is varied, (6) use of optimal control methods to 
provide a path that is close to the optimal trajectory, even when the available thrust for the 
vehicle is limited. 

In short, this report demonstrates a method for determining the optimal trajectory and 
then using optimal control to best follow that trajectory in practical situations. All of the results 
presented in this report are simulation results run in MATLAB on a generic model of surface 
vehicles operating in currents. 



PLANAR SURFACE VEHICLE MODEL 

This study used a generic three degree-of-freedom surface vehicle model (figure 1) that 
considers surge, sway, and yaw dynamics and neglects heave, roll, and pitch dynamics.' 
The vehicle-fixed coordinate system is positioned at the center of mass with linear translational 
velochies {u, v} and rotational velocity {r = 9}. Similarly, the interial (earth-fixed) reference 
frame {X,Y} is positioned at the center of mass of the vehicle with linear translational velocities 
{x,y} and rotational velocity {6}. 

Figure 1. Schematic of a Generic Surface Vehicle 

The rotation transformation matrix (equation (1)) used to map between vehicle-fixed and interial 
coordinates is given by: 

X' cosO -sin 9 0" ■u 

y — sin 9 cos 9 0 V 

e- .   0 0 1. -r 
(1) 

In the vehicle-fixed reference frame, the dynamics of the vehicle can be written as shown 
in equation (2): 

Mi] + C{r])ri + D{r\)rj = f, (2) 

where 77 = {uvr ]^is a state vector, M is the added mass and interial matrix, C is the Coriolis 
and centripetal matrix, D is the damping matrix, and / are the control forces and moments. The 
mass matrix M and Coriolis and centripetal matrix C can be further decomposed as shown in 
equation (3) 

M = MRB -I- MA and C = C^e + Q (3) 



The mass matrix (equation (4)) is composed of rigid body contributions (that is, mass and 
inertia) and contributions from the surrounding fluid (that is, "added mass"). The mass matrix 
can be written as 

M = 
m — Xy 

0 
0 

0 0 
m-Yy     mXg — Yf 

mXg — Y^     I2 — Nf. 
(4) 

where the following constants are used: 

m = 153.94 kg 

/z = 73.04 kg m^ 

X^ = -18.17 kg 

Yi, = -124.54 kg 

y^ = 0 kg m 

Nr = -36.15 kg m. 

The Coriolis and centripetal matrix is written as shown in equation (5): 

civ) = 
0 
0 

0 m{Xgr + 17) — {YyV — Y^r) 

-m (xgr + v) + Yi,v + Yi-r    {-X^ + m)u 
m — X^u 

0 
(5) 

The damping matrix is composed of linear and nonlinear terms. The linear damping is 
due to laminar friction on the body of the vehicle, and the nonlinear damping results from vortex 
shedding off the hull of the vehicle. The composite damping matrix is written as shown in 
equation (6): 

D = D, + Dr,Liv) = 

where the following constants are used: 

\Xu 0 0- 
0 Yv Yr + 

.0 K Nr\ 

^u|u|l"l 
0 

0 

0 

0 

0 

0 

Nr\r\\r\ 
(6) 

X^ = -107.33 kg/s 

y; = -536.67 kg/s 

Yr = -322.00 kg m/s 

Ny = -128.80 kg m/s 

Nr = -1073.33 kg mVs 
;r,|,| = -107.33 kg/m 



^vbl = -536.67 kg/m 

N^\r\ = -322.00 kg m^. 

The control force and moment vector is written as sliown in equation (7): 

/- 

" P cos 0 
Psin0 

a P sin(p. 
(7) 

where a is the distance from the bow of the vehicle to the center of mass and P is the applied 
thrust at an angle 0. 

Next, external forcing in the model was considered in the form of a constant current flow 
f f (ly and Vy ) in the vehicle-fixed reference frame. The implementation of these equations can be 

implemented into MATLAB and integrated using ODE45 (MATLABs ordinary differnential 
equation solver). The equations can be rewritten in the inertial frame of reference as a set of six, 
first-order ODEs as follows (equation (8)) where (•) represents the relative difference between 
the velocity component and the current flow in that direction: 

X 

ii 

y 
V 

e 

-   Af-1 = iV 

COS 6 -sin 6 0 0 - 
u+Xu\u\\^\ mr -(Y^v- Y,r) Pu 

sin0 
mr 

cos 9 
Yy + Y^ + Y^^^^lv 

0 
Y,-X^u 

u 
V + iv-i 0 

Pv 
0 0 1 

Lrj 
0 

Y^v + Y^r Ny-X^u Nr + Nrir\\r\. -aP^- 

(8) 

where 

N = 

1 0 0 0 0 0 
0 m- X^ 0 0 0 0 
0 0 1 0 0 0 
0 0 0 m-Yi, 0 -Yr 
0 0 0 0 1 0 
0 0 0 -Yr 0 h-Nr 

\u = u- Vj 

V^ = V^ cos e + V' sin B,      and 

V^ = -V/ sin 6 + vj cos Q . 



NUMERICAL BENCHMARKING OF MODEL 

To test the model performance, the dynamic response due to several initial conditions 
was investigated; the resulting motion trajectories are shown in figures 2 through 5. In each 
case, the vehicle starts at [0,0]. For the case depicted in figure 2, the current flow in the 
horizontal and vertical dimensions are ly  = 0.02 m/s and Vy  — 0.01 m/s, respectively. The 
vehicle is propelled by P^ = P cos 0 = 10 TV thrust in the u-direction, and P^ = P sin 0 = 50 JV 

thrust in the v-direction. A trajectory length of only 2 minutes is shown starting from a position 
aligned with the flow and zero-relative velocity with respect to the water. In figure 2, plot (A) 
shows the surface trajectory of the vehicle, plot (B) shows the vehicle displacements, plot (C) 
shows velocity, and plot (D) shows orientation and angular rate versus time. During the 
2-minute trajectory, the vehicle rotated at a constant angular rate and translated in both X- and 
Y-directions. According to plot (B), the vehicle traversed a greater distance in the X-direction 
than in the Y-direction—a result of the applied thrust in the Y-direction, which produced a 
torque on the vehicle and caused the vehicle to rotate (plot D). Furthermore, the vehicle 
experienced a current flow that was twice as great in magnitude in the X-direction than in the 
Y-direction. 

003 

0.02 

0.01 

0 0.5 1 1.5 
/(Uj Time (s) 

Figure 2. Sample Motion Trajectories Generated by the Vehicle 
rf - 0. 02 m/s and V^, = 0. 01 m/s forV, 

(The vehicle is propelled by P^ = 1QN thrust in the u-direction and P^ = SO N thrust in the 
v-direction. Plot (A) shows the surface trajectory of the vehicle, 

plot (B) shows the vehicle displacements, plot (C) shows velocity, 
and plot (D) shows orientation and angular rate versus time.) 



Figure 3 depicts the response if the thrust is changed to P^^ = 1 N and P„ - 50 N. The 
same dynamic behavior is seen in this sample trajectory as in the first case depicted in figure 2; 
however, with such a decrease of appHed thrust in the X-direction, the vehicle rotated more in 
the same amount of time. The same type of response was observed in the first case (figure 2) 
except there were more rotations. Again, the vehicle rotated at a constant angular velocity. 

•0.02 

-0 04 

■0,06 

Time (s) 

Figure 3. Sample Motion Trajectories Generated by the Vehicle 
for V{ = 0. 02 m/s and v[ = 0. 01 m/s 

(The vehicle is propelled by P^ — IN thrust in the u-direction and P^ — SQN thrust in the 
v-direction. Plot (A) shows the surface trajectory of the vehicle, 
plot (B) shows the vehicle displacements, plot (C) shows velocity, 

and plot (D) shows orientation and angular rate versus time.) 



Figure 4 depicts the effects if there is no appHed thrust in either direction and an initial 
relative linear and angular velocity of i; = 1.7 m/s and r = 10 rad/s, respectively. Without an 
applied thrust, the displacement increased linearly and the velocity, rotation, and angular velocity 
all remained constant after the transients decay due to the initial conditions. The steady-state 
response was reached within t = 0.1 s. The large jump in plot (A) between the first and second 
vehicle plot is a result of the initial condition. At the first time step, the vehicle is located at [0,0] 
with the prescribed initial conditions. At the second time step, as a result of the dynamics, the 
velocity decreased to almost zero and rotation became constant; however, during this time step, a 
significant change in Y-displacement occurred. 

Figure 4. Sample Motion Trajectories Generated by the Vehicle for No Applied Thrust, 
v{ = 0. 02 m/s and V^^ = 0.01 m/s, and v = 1.7 m/s Initial Relative Velocity 

andr = 10 rad/s Angular Velocity 
(Plot (A) shows the surface trajectory of the vehicle, plot (B) shows the vehicle displacements, 

plot (C) velocity, and plot (D) shows orientation and angular rate versus time.) 



Figure 5 depicts the last numerical benchmark of the vehicle model. The same conditions 
were used as in the previous case (figure 4); however, the current flow was increased to vl — 

0.2 m/s and Vy = 0.2 m/s. Again, the same type of response was observed; the difference is the 
distance that was traveled in both the X- and Y-directions is a result of the increased current 
flow. Again, the large displacement observed in plot (A) is a resuh of the initial condition. 

Time (s) 

Figure 5. Sample Motion Trajectories Generated by the Vehicle for No Thrust but 
with 17 = 1.7 m/s Initial Relative Velocity and r = 10 rad/s Angular Velocity, 

V{^0.2 m/s andv[^0.2 m/s 
(Plot (A) shows the surface trajectory of the vehicle, plot (B) shows the 

vehicle displacements, plot (C) shows velocity, and plot (D) shows orientation 
and angular rate versus time.) 



TWO-POINT BOUNDARY VALUE PROBLEM AND CONTINUATION 

The overall goal of this investigation is to determine a path for a generic surface vehicle 
to follow that passes between two waypoints in a predetermined fixed amount of time. Without 
loss of generality, only two waypoints will be considered. The proposed method is not 
concerned if these waypoints are the start and end locations of a specific mission, or if they are 
interior waypoints in a larger path-planning exercise. The overarching problem of determining a 
trajectory between two points with a given time can be expressed mathematically as a two-point 
boundary value problem (BVP). The standard practice lends itself to solving these problems 
using methods such as finite difference, shooting, and collocation.^^ Other techniques to 
determine optimal paths involve heuristic procedures that are tuned to specific application 
contexts and are thus difficult to apply when a specific optimization objective is required. The 
two-point BVP described in the following paragraphs uses the numerical procedure in 
MATLAB's BVP (bvp4c) algorithm using the continuation method. 

The goal is to find a solution to the set of first-order ODEs that were previously presented 
that model a generic surface vehicle on the time interval [0, T] subject to two-point boundary 
value conditions: 

x(0) -0 = 0 
u(0) - K. = 0 
y(0) -0 = 0 
i;(0) -V^ = 0 (9) 
r(0) -0 = 0 

x(T) -XT = 0 

y(.T) - r^ = 0 

where the initial position is at zero-time from zero-position with zero-relative and angular 
velocities, and the final position is (X-p, Y-p) in time T. In addition to the mofion trajectory, the 
solution to the BVP should also provide the initial orientation 6(0) and propulsion 
parameters(Pji, Py). Generally, there are multiple solutions to this particular BVP, but the 
MATLAB's bvp4 c function will find the trajectory and thrust parameters based on an initial 
guess of the solution. 

Solving the BVP problem using bvp4c requires an initial guess for the solution. Note 
that the algorithm is very sensitive to the particular form of the initial guess. The quality of the 
initial guess is paramount in convergence speed of the BVP algorithm and often determines if the 
solution can be determined practically. To facilitate finding a good initial guess that will 
converge to the solution, if available, one should use some a priori information about the system 
or the solution. If some intermediate solution is known, one can use continuation^'^ to solve the 
BVP sequentially by incrementing parameters from the known intermediate solution to the 
needed one—the method that was adopted in this work to find convergent solutions. 



NOMINAL PATH PLANNING FOR SURFACE VEHICLES 

Before determining an optimal path for the vehicle to follow to the desired end location 
or waypoint, a nominal path must first be determined. The nominal path (NP) is defined as the 
path that requires minimal extended propulsion energy. For this investigation, a constant, slow 
surface current in an arbitrary direction r] was assumed. There is an intuitive supposition that 
sometimes it is beneficial (in terms of expended energy) to go against the flow for a short period 
of time and then just ride the current to the target without any propulsion. In particular, here we 
tested a hypothesis that, if the goal is achievable, then the straight-line path to the target is the 
most economical. 

The schematic of a test configuration is shown in figure 6. The objective is to reach point 
B {Xj, Yj) in a fixed fime T starting from point 0 (0,0) while expending minimal energy. Two 
strategies for reaching the goal B were considered: (1) a straight-line motion to the goal (that is 
fi-om 0 to B) and (2) first getting to the current flow streamline that passes through the goal (that 
is, from 0 to .4) and then just riding that streamline to the goal (that is, from A to B) with no 
thrust. Note that the most efficient way to get to the streamline is to head perpendicular to it 
0 = 72 + 77). 

.^r   ^. ^ _^   .^   ^    -^ ^^ ^   ,,                                     ^ -^     .^   .^   .---^   .^   ^--r   .^      ,^   .'T  

.-i.-: H H25^5^3?^H 2 E 
--y^^^><^>y .-^ ^^ _^r^ ..^ ^ .^ ^^ ^\^ 

^^^ ^.^iS ^^^^^^_^^U ^-^^^^^.^ .^^^^^\^ ^-^.^^.^^^^^                  |- ^^^^.^^^^,^^ 
j^^-r ^^,-^^^,-^,.,-9-,,-»-^-*'.,-».                                  1- 
.^^,-,-,*^^^--»^,--.,    -...■r\. 

' ^^-^^-^ -^  -^ -^ -^ -^ '' -' -^ -^ -^ -^ ^^ 
•  .^ ,-^ ^^ ^-^       -                                V ,^ ,^ _^ J-* 
----'-                                           .^^^i^ 
=',---?•'-                                         ^ .-^ .^^ .-^ L^ 

.:.:,             v—---±. 
' .^*- - ?■                           * .^»' .--^ ,-*' ,,^ ^^ ]^ 

:::::;. :i-Z':.-^-'i'i\" 
o Xf X.T       yC 

Figure 6.  Geometry for Vehicle NP Planning 

In practice, there would be some energy spent reorienting the vehicle at point A once the 
thrust is set to zero, but it is assumed that spent energy is small and negligible. Even if this 
energy is not negligible, it will only add to the cost of getting to the streamline. The most 
economical constant amplitude thrust for the powered straight-line motions from 0 to S, or 0 
to A was used. Time spent going across the current is denoted TQ and time spent gliding along 
the current is denoted Tp, hence the overall travel time is T = 7^ -f Tp. 

In the first scenario (strategy \),T — TQ, then the average velocity required to reach the 
goal is V^ = d^/o/T, where dg/o 's a distance between points B and 0. In addition, if the 

10 



corresponding average relative velocity of the vehicle with respect to the water is greater than the 
maximum possible vehicle velocity, the objective is unreachable. To calculate the actual thrust 
required for reaching the goal, the two-point BVP using the vehicle model (equation (8)) and the 
following initial and boundary conditions (equation (10)) were used: 

X-i 

u 

y 
V 

e 

0 
Vj COS B + VJ sin B 

0 

-7/sin0 + V;f COS0 

0 

X X, 

LTJ 
(10) 

where QQ = tan -1 "y 

Vi'-Vi 
After determining the required constant thrust P, the total energy 

expended by the vehicle was determined by integrating the product of P^ with u (that is, the 
thrust and velocity in the u —direction, respectively) over the time of travel T (equation (11)): 

£■= J^P^udt = Z^^I^P^u„M. (11) 

For the second scenario (strategy 2), the thrust required to get to point A was estimated 
using a continuation from the solution obtained for the straight-line motion scenario (first 
strategy). In this case, the average velocity during powered travel is V* = d^/o/T'c- In 
calculations, the time spent coasting along the current Tp was incremented from 0 to Tf, and the 
corresponding two-point (for the time from Oto Tc -T - Tp) BVP was solved using the 
solution from the previous iteration step and the boundary condhions shown in equation (12): 

0 
rX-| 

U 

y 
V = 

9 
r- t=o 

V/ COS 9 + I// sin 9 

0 
-Vj sin 9 + I// cos 9 

72 + ^ 
0 

t=Tc 

Xp 
(12) 

where Tp is a critical coasting time after which the objective is not reachable even using the 
maximum thrust available. 

The results of the simulation are shown in figure 7, where the calculated expended energy 

is plotted versus the ratio of —. The resulting curve confirms the hypothesis that the most 

economical path to the goal is motion on a straight line when moving with constant thrust. A 
straight line, therefore, was chosen as an NP to the goal. 

11 



4 6 
Time Ratio (Tp/T^) 

10 

Figure 7. Energy Required to Reach the Goal Versus Ratio of Time Spent 
Free-Floating over Time Spent on Powered Motion 

The formulation was modified to look at constant thrust motion from 0 to S with the 
different initial orientation of the vehicle mimicking the previous cases (strategies 1 and 2). In 
these cases there were no energy costs associated with the reorienting at point ^4. The BVP for 
each case was solved again using the results from the previous iteration while the angle was 
iterated from the initial required orientation for the straight-line motion to an additional 90°. The 
resultant motion trajectories are shown in the left plot in figure 8; the associated energy 
expended is shown in the right plot in figure 8. 

x(m)- initial Angle (Degrees) 

Figure 8.  Various Achievable Trajectories with Constant Thrust Propulsion (Left Plot) 
and the Corresponding Energy Scaling with the Divergence from the 

Straight-Line Path (Right Plot) 
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OPTIMAL CONTROL TO FOLLOW THE NOMINAL PATH 

It has been established that an NP for reaching a goal in fixed time is a straight-line path. 
For the NP, it was assumed that the vehicle's initial heading was parallel to the optimal heading 
and its initial relative velocity was zero. In practice, both assumptions are not realizable, and the 
vehicle could have any arbitrary initial heading and velocities within an allowable range. The 
vehicle equations have demonstrated that the vehicle is highly maneuverable (see figures 2 
through 5) and can reorient itself within several seconds or minutes. Thus, the next step is to 
focus on developing an optimal control strategy"^^ that can be used to reorient the vehicle and 
follow the NP. During the simulations, it was observed that the controller's success was very 
sensitive to the size of the time step used in adjusting the control input. If the time step was kept 
small, the controller was stable; but if the time step was larger than the time it took to reorient the 
vehicle, the controller failed. In practice, one may want to split the control strategy into two 
stages: (1) initial reorientation (during which, the time step is kept small) followed by (2) NP 
tracking (for which, the time step can be increased substantially). 

This investigation considered the vehicle model expressed in equation (13) for optimal 
control procedure: 

where 

X 

u 
y 
V 

9 

M = 

cos 9 —sin 9 0        1 \ ° 1 
^u + ^u|u|l^l mr -(Y,v - Y,r) Pu 

= M-i 
sin 9 
mr 

0 

cos 9 
Yy + Y^, + y^i^^i 

0 

0 
\V\            Yr-Xi,U 

1 

u 
V 

T. 

+ M-^ 
0 

Pv 
0 

.  Y^v + Y,r Ny-X^u Nr + Nr\r\\r\. -aPy- 

10         0         0 0         0     1 
0    m-X^    0        0 0         0 
0         0         10 0         0 {u^u- Vj 
0         0         0    m-Yi, 
0         0         0        0 

0 -Y, 
1 0 

\v = v- vJ ' 
0        0 0      -Y, 0    I,-N,. 

K, = V/ cos 9 + vJ sin 9, and 

(13) 

K; = -Vj Sin 9 + Vj cos 9 . 

Upon introduction of a state vector z = [x, u, y, v, 9,rY, equation (13) is rewritten as: 

z^Fiz.p-). 
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The corresponding Jacobian matrices with respect to state and control variables are 
represented in equation (14): 

dF 

dz 
0 cos 9 0 -sln0 
0 X^ +2X^1^1 |w| 0 mr 
0 sin0 0 cos 9 
0 mr 0 Y^ + Y^ + 2Y^ 
0 0 0 0 
0 Yi,v+ Y^r 0 Ny-Xuu 

—usm9 — vcosd 

ucosO — i;sin0 

0 
uAV^ + vAVu 

0 
-(Yi,V-  YrV) 

0 
Yr-X^U 

Nr + 2Nrir\\rl 

0 0-1 
1 0 

-— = M ^ 
dp 

0 
0 

0 
1 

0 0 
Lo a- 

(14) 

where 

AV^ = V/ sin 9 - v/ cos 9,      and    AVy = v/ cos 9 + vj sin 9 . 

Now, let tk, which is uniformly distributed over time, be the times at which possible 
adjustments can be made to the control inputs. These time steps are separated by /i = At = T/N. 
Let the current trajectory be z, denoting the NP z, and the corresponding constant thrust P. Then 
the deviation from the NP trajectory is defined as: 

Az(tfc) = z(tfe) - z(tfc). (15) 

This deviation leads to the following linear discrete approximation to the equations of motion 
about the NP trajectory (equation (16)): 

Zfc+i = Zfe + h^\    _ Az, + h^£iP + APfc), 

where t^ = kh, z^ = z(ti^). Equation (16) is rewritten in equation (17): 

Zfc+i=/lfcZfc + 5fe(P + APfe), 

where 

(16) 

(17) 

A^ = I + h—        ,    and   Bu = h—. 
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An optimal control strategy for the vehicle was found based on equations (18), (19), and 
(20) by using dynamic programming. The optimal control goal was to minimize the following 
objective function: 

T = a zlHZf, + (1 - a) YHzl zlQ^z„ + APlRk^Pk (18) 

Using standard dynamic programming procedures,^ the gain used for control was calculated 
recursively for k from 1 to N — 1 using: 

 -1 

^N-k = -[(1 - «^)^n-/c + Bn-k^k-lBn-k]     ^n-k^k-l^n-k ' (19) 

where 

^k = ^N-k^k-l^N-k + (1 ~ ^)^N-k^iV-fc^W-fc + (1 ~ ^)QN-k^ 

with 

UN = aH,   and  l/^.^ ^ A^_^ + B^-k'^k-i- 

The appropriate adjustment to the thrust at the k-ih. time step was then calculated as 

APfe = Cfc(Zfc-zJ. (20) 

The application of this thrust adjustment provided an optimal control that followed the stated 
trajectory as best as possible, given the constraints of the vehicle dynamics and available control 
authority. 
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TESTING THE OPTIMAL CONTROL PROCEDURE 

The effectiveness of the optimal control procedure was demonstrated by testing it on a 
problem whose initial conditions were perturbations from the initial conditions used for 
determining the initial optimal path. The objective was to start in the vicinity of the (0,0) 
position and reach a target at (X, Y) = (1000,1000) m position in 50 minutes. We assume the 
current is 0.2 m/s in x-direction and —0.2 m/s in the y-direction. The NP was calculated by 
solving the corresponding BVP (see figure 9), where the nominal thrust was P^ = 91.481 N. 

1000 

1 1 1 1 1 1 1 1 1 1 1— 

900 y^ 
800 

/ 
700 / 

600 / 

I 5°° / >. X 
400 

/ 
300 / 

200 / 

100 / 

/ 
_. 

0 -Y 
1    1    1    1    1    1 , I 1 I ■ , , 

0   100  200  300  400  500  600  700  800  900 1000 
X (m) > 

Figure 9. NP Used in Control Testing 

The initial condition for NP (■) (equation (21)) and the actual initial condition given to 
the control algorithm (equation (22)) are 

rx] 
u 
y 
V 

= 

6 
LfJ t=0 

0 
-0.1455 

0 
-0.2425 
1.3258 

0 

(21) 
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-1.3008 
0.8824 

10.7352 
8.0658 
-2.7238 

0 

For the objective function, we set a = 0.9, and use the following matrices: 

rX-i 

u 

y 
V 

9 
Ifi t=o 

(22) 

Qk = 

10    0    0    0 0 
0    10    0    0 0 
0    0    10    0 0 
0    0    0    10 0 
0    0    0    0    0 0 
0    0    0    0    0 OJ 

H.= 

10 0    0 0 0 
0    0 0    0 0 0 
0    0 10 0 0 
0    0 0    0 0 0 
0    0 0    0 0 0 

LO    0 0    0 0 1 

and  R, = [J    °].   (23) 

The resulting trajectories are shown in figure 10; figure 11 shows the adjustments needed 
in the control inputs. Figure 12 shows a blowup of the resulting trajectories near the beginning 
of motion, and figure 13 shows the difference between the nominal and actual trajectories. 

I 
E 

-1000 

■ nominal 
■ no control 
• controlled 

-1000 -500 0 
x(m) 

500 1000 

Figure 10. Optimal Control Applied to the Perturbed Initial Condition 
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Figure 11. Adjustments to the Applied Thrust Needed for Optimal Control in Figure 10 
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Figure 12. Blow-Up Near the Initial Time of the Optimal Control Shown in Figure 10 

t 

< 

-10 

-10 

Figure 13. Difference Between the Nominal and Actual Trajectories 
for the Optimal Control Given in Figure 10 
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LIMITING CONTROL INPUT MAGNITUDE IN OPTIMAL CONTROL 

In a more realistic environment, an unlimited amount of thrust is usually not available; 
therefore, any restrictions that meet a physical behavior or desired response can be incorporated 
into the optimal trajectory determination methodology. Generally, this problem is solved by 
incorporating a penalty function in the objective function or implementing a constrained optimal 
control procedure (using interior point methods). For this research, the clipping procedure was 
used; that is, the control inputs are clipped to a maximum amplitude. This control strategy was 
tested for several initial conditions; no significant degradation in controller performance was 
observed. The goal NP is shown in figure 14, where the objective needs to be reached in 10 
seconds. The constant thrust estimated by solving the BVP for the NP was 91.628 N, and the 
maximum possible amplitude was set to be 125 N (as with all that follow). 

Figure 14. Optimal Constrained Control Applied to the Perturbed Initial Condition 

Figure 15 shows the constrained controlled tracking of the NP; the corresponding clipped 
control inputs are shown in figure 16. The deviations between the nominal and actual 
trajectories are given in figure 17. The initial condition for the NP (equation (24)) and the actual 
initial condition given to the control algorithm (equation (25)) are 

rxi r       0       1 
u -0.1455 
y 
V 

— 0 
-0.2425 

e 1.3258 
Vf\ t=o L      0      -1 

(24) 
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rX-i r-0.7860-| 
U -5.3962 
y -0.8570 
V -2.7366 
e -1.6118 

Vy\ t=0 L      0      J 

(25) 

For the objective function, we set a = 0.95, and all other matrices were the same. 

200 

150 

^100 
E 

50 
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• no control 
• controlled 

200 

Figure 15. Optimal Constrained Control Applied to the Perturbed Initial Condition 
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Figure 16. Applied Thrust Variations Needed for Control Shown in Figure 15 
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15 

10 
t 
? 
>. 
<   5 1 
 controled 
 no control \1/ 

-10 
A X (m) 

Figure 17. Difference Between the Nominal and Actual Trajectories 
for the Optimal Control Given in Figure 15 

Figure 15 shows that it is clear that 10 s is not enough time to achieve the objective in 
this situation; therefore, simulations for a larger time and space for the exact same objective and 
NP shown in figure 9 were run. The results are shown in figures 18, 19, and 20 for when the 
initial condition for NP (equation (26)) and the actual initial conditions given to the control 
algorithm (equation (27)) are 

t=o 

rX-| 

U 

y 
V 

— 

6 
L-fi t=0          ^ 

0 
-0.1455 

0 
-0.2425 
1.3258 

0 

-3.4692 
-1.7462 
-6.0079 
2.6502 
2.8860 

0 

(26) 

(27) 

It is clear from these extended-time trajectories that the allowance of additional time 
creates a more gradual deviation using moderate levels of thrust over the extended time. Also, 
the additional time allows for a controlled trajectory that does reach the goal point. 
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Figure 18. Optimal Constrained Control Applied to the Perturbed Initial Condition 
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Figure 19. Applied Thrust Variations Needed for Control Shown in Figure 18 
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Figure 20. Difference Between the Nominal and Actual Trajectories for 
the Optimal Control Given in Figure 18 
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SUMMARY AND CONCLUSIONS 

The concept of optimal path planning and optimal control of a generic surface vehicle in 
a constant current flow was investigated. A three degree-of-freedom, rigid-body model for a 
surface vehicle was developed, its parameters were estimated, and its performance was tested in 
simulations. The resulting model was used to estimate a nominal path of motion for a vehicle by 
solving a two-point boundary value problem. It was shown in a relatively static current flow that 
a straight-line constant trust motion was optimal in terms of energy consumption. An optimal 
control algorithm was developed to follow the determined nominal path of motion and was 
extensively tested in various condhions. For sufficiently small time steps, the optimal control 
strategy was able to follow the nominal trajectory even when substantial perturbations were 
introduced in the initial condhions. The algorithm was also modified to limit range-of-control 
input values and was still capable of following pre-planned trajectory. 

In more dynamic or nonlinear current flows, the solution of a two-point boundary value 
problem becomes more problematic and straight-line paths are no longer optimal. It is still 
feasible that the constant thrust motion will be the most advantageous even in these dynamic, 
nonlinear condhions. It may be possible to solve the two-point boundary value problem in a 
static nonlinear current flow environment, but some other path planning methodology is required 
for a dynamic flow/obstacle environment. Metaheuristic search methods to find the energy- 
efficient paths is one such possibility and is, in fact, the planned methodology for the next phase 
of this research. 
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